A SSLE-Type Algorithm of Quasi-Strongly Sub-Feasible Directions for Inequality Constrained Minimax Problems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

A Derivative-Free Algorithm for Linearly Constrained Finite Minimax Problems

In this paper we propose a new derivative-free algorithm for linearly constrained finite minimax problems. Due to the nonsmoothness of this class of problems, standard derivative-free algorithms can only locate points which satisfy weak necessary optimality conditions. In this work we define a new derivative-free algorithm which is globally convergent toward standard stationary points of the fi...

متن کامل

A Simple SQP Algorithm for Constrained Finite Minimax Problems

A simple sequential quadratic programming method is proposed to solve the constrained minimax problem. At each iteration, through introducing an auxiliary variable, the descent direction is given by solving only one quadratic programming. By solving a corresponding quadratic programming, a high-order revised direction is obtained, which can avoid the Maratos effect. Furthermore, under some mild...

متن کامل

A Newton-type Algorithm for the Solution of Inequality Constrained Minimization Problems

We describe a new Newton-type algorithm for the solution of inequality constrained minimization problems. The algorithm is based on an active-set strategy and, at each iteration, only requires the solution of one linear system. Under mild assumptions, and without requiring strict complementarity, we prove q-quadratic convergence of the primal variables towards the solution.

متن کامل

A Feasible Sequential Linear Equation Method for Inequality Constrained Optimization

In this paper, by means of the concept of the working set, which is an estimate of the active set, we propose a feasible sequential linear equation algorithm for solving inequality constrained optimization problems. At each iteration of the proposed algorithm, we first solve one system of linear equations with a coefficient matrix of size m × m (where m is the number of constraints) to compute ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Mathematics

سال: 2023

ISSN: ['2456-8686']

DOI: https://doi.org/10.4208/jcm.2106-m2020-0059